Appearance
查询数据
在关系数据库中,最常用的操作就是查询。
准备数据
为了便于讲解和练习,我们先准备好了一个students
表和一个classes
表,它们的结构和数据如下:
students
表存储了学生信息:
id | class_id | name | gender | score |
---|---|---|---|---|
1 | 1 | 小明 | M | 90 |
2 | 1 | 小红 | F | 95 |
3 | 1 | 小军 | M | 88 |
4 | 1 | 小米 | F | 73 |
5 | 2 | 小白 | F | 81 |
6 | 2 | 小兵 | M | 55 |
7 | 2 | 小林 | M | 85 |
8 | 3 | 小新 | F | 91 |
9 | 3 | 小王 | M | 89 |
10 | 3 | 小丽 | F | 85 |
classes
表存储了班级信息:
id | name |
---|---|
1 | 一班 |
2 | 二班 |
3 | 三班 |
4 | 四班 |
请注意,和MySQL
的持久化存储不同的是,由于我们使用的是AlaSQL内存数据库,两张表的数据在页面加载时导入,并且只存在于浏览器的内存中,因此,刷新页面后,数据会重置为上述初始值。
MySQL
如果你想用MySQL练习,可以下载这个SQL脚本,然后在命令行运行:
plain
$ mysql -u root -p < init-test-data.sql
就可以自动创建test
数据库,并且在test
数据库下创建students
表和classes
表,以及必要的初始化数据。
和内存数据库不同的是,对MySQL数据库做的所有修改,都会保存下来。如果你希望恢复到初始状态,可以再次运行该脚本。
基本查询
要查询数据库表的数据,我们使用如下的SQL语句:
sql
SELECT * FROM <表名>
假设表名是students
,要查询students
表的所有行,我们用如下SQL语句:
Run
使用SELECT * FROM students
时,SELECT
是关键字,表示将要执行一个查询,*
表示“所有列”,FROM
表示将要从哪个表查询,本例中是students
表。
该SQL将查询出students
表的所有数据。注意:查询结果也是一个二维表,它包含列名和每一行的数据。
要查询classes
表的所有行,我们用如下SQL语句:
Run
运行上述SQL语句,观察查询结果。
SELECT
语句其实并不要求一定要有FROM
子句。我们来试试下面的SELECT
语句:
Run
上述查询会直接计算出表达式的结果。虽然SELECT
可以用作计算,但它并不是SQL的强项。但是,不带FROM
子句的SELECT
语句有一个有用的用途,就是用来判断当前到数据库的连接是否有效。许多检测工具会执行一条SELECT 1;
来测试数据库连接。
小结
使用SELECT查询的基本语句SELECT * FROM <表名>
可以查询一个表的所有行和所有列的数据;
SELECT查询的结果是一个二维表。
条件查询
使用SELECT * FROM <表名>
可以查询到一张表的所有记录。但是,很多时候,我们并不希望获得所有记录,而是根据条件选择性地获取指定条件的记录,例如,查询分数在80分以上的学生记录。在一张表有数百万记录的情况下,获取所有记录不仅费时,还费内存和网络带宽。
SELECT语句可以通过WHERE
条件来设定查询条件,查询结果是满足查询条件的记录。例如,要指定条件“分数在80分或以上的学生”,写成WHERE
条件就是SELECT * FROM students WHERE score >= 80
。
其中,WHERE
关键字后面的score >= 80
就是条件。score
是列名,该列存储了学生的成绩,因此,score >= 80
就筛选出了指定条件的记录:
Run
因此,条件查询的语法就是:
sql
SELECT * FROM <表名> WHERE <条件表达式>
条件表达式可以用<条件1> AND <条件2>
表达满足条件1并且满足条件2。例如,符合条件“分数在80分或以上”,并且还符合条件“男生”,把这两个条件写出来:
- 条件1:根据score列的数据判断:
score >= 80
; - 条件2:根据gender列的数据判断:
gender = 'M'
,注意gender
列存储的是字符串,需要用单引号括起来。
就可以写出WHERE
条件:score >= 80 AND gender = 'M'
:
Run
第二种条件是<条件1> OR <条件2>
,表示满足条件1或者满足条件2。例如,把上述AND
查询的两个条件改为OR
,查询结果就是“分数在80分或以上”或者“男生”,满足任意之一的条件即选出该记录:
Run
很显然OR
条件要比AND
条件宽松,返回的符合条件的记录也更多。
第三种条件是NOT <条件>
,表示“不符合该条件”的记录。例如,写一个“不是2班的学生”这个条件,可以先写出“是2班的学生”:class_id = 2
,再加上NOT
:NOT class_id = 2
:
Run
上述NOT
条件NOT class_id = 2
其实等价于class_id <> 2
,因此,NOT
查询不是很常用。
要组合三个或者更多的条件,就需要用小括号()
表示如何进行条件运算。例如,编写一个复杂的条件:分数在80以下或者90以上,并且是男生:
Run
如果不加括号,条件运算按照NOT
、AND
、OR
的优先级进行,即NOT
优先级最高,其次是AND
,最后是OR
。加上括号可以改变优先级。
常用的条件表达式
条件 | 表达式举例1 | 表达式举例2 | 说明 |
---|---|---|---|
使用=判断相等 | score = 80 | name = 'abc' | 字符串需要用单引号括起来 |
使用>判断大于 | score > 80 | name > 'abc' | 字符串比较根据ASCII码,中文字符比较根据数据库设置 |
使用>=判断大于或相等 | score >= 80 | name >= 'abc' | |
使用<判断小于 | score < 80 | name <= 'abc' | |
使用<=判断小于或相等 | score <= 80 | name <= 'abc' | |
使用<>判断不相等 | score <> 80 | name <> 'abc' | |
使用LIKE判断相似 | name LIKE 'ab%' | name LIKE '%bc%' | %表示任意字符,例如'ab%'将匹配'ab','abc','abcd' |
查询分数在60分(含)~90分(含)之间的学生可以使用的WHERE语句是:
WHERE score >= 60 OR score <= 90
WHERE score >= 60 AND score <= 90
WHERE score IN (60, 90)
WHERE score BETWEEN 60 AND 90
WHERE 60 <= score <= 90
Submit
小结
通过WHERE
条件查询,可以筛选出符合指定条件的记录,而不是整个表的所有记录。
投影查询
使用SELECT * FROM <表名> WHERE <条件>
可以选出表中的若干条记录。我们注意到返回的二维表结构和原表是相同的,即结果集的所有列与原表的所有列都一一对应。
如果我们只希望返回某些列的数据,而不是所有列的数据,我们可以用SELECT 列1, 列2, 列3 FROM ...
,让结果集仅包含指定列。这种操作称为投影查询。
例如,从students
表中返回id
、score
和name
这三列:
Run
这样返回的结果集就只包含了我们指定的列,并且,结果集的列的顺序和原表可以不一样。
使用SELECT 列1, 列2, 列3 FROM ...
时,还可以给每一列起个别名,这样,结果集的列名就可以与原表的列名不同。它的语法是SELECT 列1 别名1, 列2 别名2, 列3 别名3 FROM ...
。
例如,以下SELECT
语句将列名score
重命名为points
,而id
和name
列名保持不变:
Run
投影查询同样可以接WHERE
条件,实现复杂的查询:
Run
小结
使用SELECT *
表示查询表的所有列,使用SELECT 列1, 列2, 列3
则可以仅返回指定列,这种操作称为投影;
SELECT
语句可以对结果集的列进行重命名。
排序
排序
我们使用SELECT查询时,细心的读者可能注意到,查询结果集通常是按照id
排序的,也就是根据主键排序。这也是大部分数据库的做法。如果我们要根据其他条件排序怎么办?可以加上ORDER BY
子句。例如按照成绩从低到高进行排序:
Run
如果要反过来,按照成绩从高到底排序,我们可以加上DESC
表示“倒序”:
Run
如果score
列有相同的数据,要进一步排序,可以继续添加列名。例如,使用ORDER BY score DESC, gender
表示先按score
列倒序,如果有相同分数的,再按gender
列排序:
Run
默认的排序规则是ASC
:“升序”,即从小到大。ASC
可以省略,即ORDER BY score ASC
和ORDER BY score
效果一样。
如果有WHERE
子句,那么ORDER BY
子句要放到WHERE
子句后面。例如,查询一班的学生成绩,并按照倒序排序:
Run
这样,结果集仅包含符合WHERE
条件的记录,并按照ORDER BY
的设定排序。
小结
使用ORDER BY
可以对结果集进行排序;
可以对多列进行升序、倒序排序。
分页查询
使用SELECT查询时,如果结果集数据量很大,比如几万行数据,放在一个页面显示的话数据量太大,不如分页显示,每次显示100条。
要实现分页功能,实际上就是从结果集中显示第1~100条记录作为第1页,显示第101~200条记录作为第2页,以此类推。
因此,分页实际上就是从结果集中“截取”出第M~N条记录。这个查询可以通过LIMIT <N-M> OFFSET <M>
子句实现。我们先把所有学生按照成绩从高到低进行排序:
Run
现在,我们把结果集分页,每页3条记录。要获取第1页的记录,可以使用LIMIT 3 OFFSET 0
:
Run
上述查询LIMIT 3 OFFSET 0
表示,对结果集从0号记录开始,最多取3条。注意SQL记录集的索引从0开始。
如果要查询第2页,那么我们只需要“跳过”头3条记录,也就是对结果集从3号记录开始查询,把OFFSET
设定为3:
Run
类似的,查询第3页的时候,OFFSET
应该设定为6:
Run
查询第4页的时候,OFFSET
应该设定为9:
Run
由于第4页只有1条记录,因此最终结果集按实际数量1显示。LIMIT 3
表示的意思是“最多3条记录”。
可见,分页查询的关键在于,首先要确定每页需要显示的结果数量pageSize
(这里是3),然后根据当前页的索引pageIndex
(从1开始),确定LIMIT
和OFFSET
应该设定的值:
LIMIT
总是设定为pageSize
;OFFSET
计算公式为pageSize * (pageIndex - 1)
。
这样就能正确查询出第N页的记录集。
如果原本记录集一共就10条记录,但我们把OFFSET
设置为20,会得到什么结果呢?
Run
OFFSET
超过了查询的最大数量并不会报错,而是得到一个空的结果集。
注意
OFFSET
是可选的,如果只写LIMIT 15
,那么相当于LIMIT 15 OFFSET 0
。
在MySQL中,LIMIT 15 OFFSET 30
还可以简写成LIMIT 30, 15
。
使用LIMIT <M> OFFSET <N>
分页时,随着N
越来越大,查询效率也会越来越低。
思考
在分页查询之前,如何计算一共有几页?
小结
使用LIMIT <M> OFFSET <N>
可以对结果集进行分页,每次查询返回结果集的一部分;
分页查询需要先确定每页的数量和当前页数,然后确定LIMIT
和OFFSET
的值。
聚合查询
如果我们要统计一张表的数据量,例如,想查询students
表一共有多少条记录,难道必须用SELECT * FROM students
查出来然后再数一数有多少行吗?
这个方法当然可以,但是比较弱智。对于统计总数、平均数这类计算,SQL提供了专门的聚合函数,使用聚合函数进行查询,就是聚合查询,它可以快速获得结果。
仍然以查询students
表一共有多少条记录为例,我们可以使用SQL内置的COUNT()
函数查询:
Run
COUNT(*)
表示查询所有列的行数,要注意聚合的计算结果虽然是一个数字,但查询的结果仍然是一个二维表,只是这个二维表只有一行一列,并且列名是COUNT(*)
。
通常,使用聚合查询时,我们应该给列名设置一个别名,便于处理结果:
Run
COUNT(*)
和COUNT(id)
实际上是一样的效果。另外注意,聚合查询同样可以使用WHERE
条件,因此我们可以方便地统计出有多少男生、多少女生、多少80分以上的学生等:
Run
除了COUNT()
函数外,SQL还提供了如下聚合函数:
函数 | 说明 |
---|---|
SUM | 计算某一列的合计值,该列必须为数值类型 |
AVG | 计算某一列的平均值,该列必须为数值类型 |
MAX | 计算某一列的最大值 |
MIN | 计算某一列的最小值 |
注意,MAX()
和MIN()
函数并不限于数值类型。如果是字符类型,MAX()
和MIN()
会返回排序最后和排序最前的字符。
要统计男生的平均成绩,我们用下面的聚合查询:
Run
要特别注意:如果聚合查询的WHERE
条件没有匹配到任何行,COUNT()
会返回0,而SUM()
、AVG()
、MAX()
和MIN()
会返回NULL
:
Run
每页3条记录,如何通过聚合查询获得总页数?
SELECT COUNT(*) / 3 FROM students;
SELECT FLOOR(COUNT(*) / 3) FROM students;
SELECT CEILING(COUNT(*) / 3) FROM students;
Submit
分组
如果我们要统计一班的学生数量,我们知道,可以用SELECT COUNT(*) num FROM students WHERE class_id = 1;
。如果要继续统计二班、三班的学生数量,难道必须不断修改WHERE
条件来执行SELECT
语句吗?
对于聚合查询,SQL还提供了“分组聚合”的功能。我们观察下面的聚合查询:
Run
执行这个查询,COUNT()
的结果不再是一个,而是3个,这是因为,GROUP BY
子句指定了按class_id
分组,因此,执行该SELECT
语句时,会把class_id
相同的列先分组,再分别计算,因此,得到了3行结果。
但是这3行结果分别是哪三个班级的,不好看出来,所以我们可以把class_id
列也放入结果集中:
Run
这下结果集就可以一目了然地看出各个班级的学生人数。我们再试试把name
放入结果集:
Run
不出意外,执行这条查询我们会得到一个语法错误,因为在任意一个分组中,只有class_id
都相同,name
是不同的,SQL引擎不能把多个name
的值放入一行记录中。因此,聚合查询的列中,只能放入分组的列。
注意
AlaSQL并没有严格执行SQL标准,上述SQL在浏览器可以正常执行,但是在MySQL、Oracle等环境下将报错,请自行在MySQL中测试。
也可以使用多个列进行分组。例如,我们想统计各班的男生和女生人数:
Run
上述查询结果集一共有6条记录,分别对应各班级的男生和女生人数。
练习
请使用一条SELECT查询查出每个班级的平均分:
Run
请使用一条SELECT查询查出每个班级男生和女生的平均分:
Run
小结
使用SQL提供的聚合查询,我们可以方便地计算总数、合计值、平均值、最大值和最小值;
聚合查询可以用GROUP BY
分组聚合;
聚合查询也可以添加WHERE
条件。
多表查询
SELECT查询不但可以从一张表查询数据,还可以从多张表同时查询数据。查询多张表的语法是:SELECT * FROM <表1> <表2>
。
例如,同时从students
表和classes
表的“乘积”,即查询数据,可以这么写:
Run
这种一次查询两个表的数据,查询的结果也是一个二维表,它是students
表和classes
表的“乘积”,即students
表的每一行与classes
表的每一行都两两拼在一起返回。结果集的列数是students
表和classes
表的列数之和,行数是students
表和classes
表的行数之积。
这种多表查询又称笛卡尔查询,使用笛卡尔查询时要非常小心,由于结果集是目标表的行数乘积,对两个各自有100行记录的表进行笛卡尔查询将返回1万条记录,对两个各自有1万行记录的表进行笛卡尔查询将返回1亿条记录。
你可能还注意到了,上述查询的结果集有两列id
和两列name
,两列id
是因为其中一列是students
表的id
,而另一列是classes
表的id
,但是在结果集中,不好区分。两列name
同理
要解决这个问题,我们仍然可以利用投影查询的“设置列的别名”来给两个表各自的id
和name
列起别名:
Run
注意,多表查询时,要使用表名.列名
这样的方式来引用列和设置别名,这样就避免了结果集的列名重复问题。但是,用表名.列名
这种方式列举两个表的所有列实在是很麻烦,所以SQL还允许给表设置一个别名,让我们在投影查询中引用起来稍微简洁一点:
Run
注意到FROM
子句给表设置别名的语法是FROM <表名1> <别名1>, <表名2> <别名2>
。这样我们用别名s
和c
分别表示students
表和classes
表。
多表查询也是可以添加WHERE
条件的,我们来试试:
Run
这个查询的结果集每行记录都满足条件s.gender = 'M'
和c.id = 1
。添加WHERE
条件后结果集的数量大大减少了。
小结
使用多表查询可以获取M x N行记录;
多表查询的结果集可能非常巨大,要小心使用。
连接查询
连接查询是另一种类型的多表查询。连接查询对多个表进行JOIN运算,简单地说,就是先确定一个主表作为结果集,然后,把其他表的行有选择性地“连接”在主表结果集上。
例如,我们想要选出students
表的所有学生信息,可以用一条简单的SELECT语句完成:
Run
但是,假设我们希望结果集同时包含所在班级的名称,上面的结果集只有class_id
列,缺少对应班级的name
列。
现在问题来了,存放班级名称的name
列存储在classes
表中,只有根据students
表的class_id
,找到classes
表对应的行,再取出name
列,就可以获得班级名称。
这时,连接查询就派上了用场。我们先使用最常用的一种内连接——INNER JOIN来实现:
Run
注意INNER JOIN查询的写法是:
- 先确定主表,仍然使用
FROM <表1>
的语法; - 再确定需要连接的表,使用
INNER JOIN <表2>
的语法; - 然后确定连接条件,使用
ON <条件...>
,这里的条件是s.class_id = c.id
,表示students
表的class_id
列与classes
表的id
列相同的行需要连接; - 可选:加上
WHERE
子句、ORDER BY
等子句。
使用别名不是必须的,但可以更好地简化查询语句。
那什么是内连接(INNER JOIN)呢?先别着急,有内连接(INNER JOIN)就有外连接(OUTER JOIN)。我们把内连接查询改成外连接查询,看看效果:
Run
执行上述RIGHT OUTER JOIN可以看到,和INNER JOIN相比,RIGHT OUTER JOIN多了一行,多出来的一行是“四班”,但是,学生相关的列如name
、gender
、score
都为NULL
。
这也容易理解,因为根据ON
条件s.class_id = c.id
,classes
表的id=4
的行正是“四班”,但是,students
表中并不存在class_id=4
的行。
有RIGHT OUTER JOIN,就有LEFT OUTER JOIN,以及FULL OUTER JOIN。它们的区别是:
INNER JOIN只返回同时存在于两张表的行数据,由于students
表的class_id
包含1,2,3,classes
表的id
包含1,2,3,4,所以,INNER JOIN根据条件s.class_id = c.id
返回的结果集仅包含1,2,3。
RIGHT OUTER JOIN返回右表都存在的行。如果某一行仅在右表存在,那么结果集就会以NULL
填充剩下的字段。
LEFT OUTER JOIN则返回左表都存在的行。如果我们给students表增加一行,并添加class_id=5
,由于classes表并不存在id=5
的行,所以,LEFT OUTER JOIN的结果会增加一行,对应的class_name
是NULL
:
Run
最后,我们使用FULL OUTER JOIN,它会把两张表的所有记录全部选择出来,并且,自动把对方不存在的列填充为NULL:
Run
对于这么多种JOIN查询,到底什么使用应该用哪种呢?其实我们用图来表示结果集就一目了然了。
假设查询语句是:
sql
SELECT ... FROM tableA ??? JOIN tableB ON tableA.column1 = tableB.column2;
我们把tableA看作左表,把tableB看成右表,那么INNER JOIN是选出两张表都存在的记录:
LEFT OUTER JOIN是选出左表存在的记录:
RIGHT OUTER JOIN是选出右表存在的记录:
FULL OUTER JOIN则是选出左右表都存在的记录:
小结
JOIN查询需要先确定主表,然后把另一个表的数据“附加”到结果集上;
INNER JOIN是最常用的一种JOIN查询,它的语法是SELECT ... FROM <表1> INNER JOIN <表2> ON <条件...>
;
JOIN查询仍然可以使用WHERE
条件和ORDER BY
排序。